Impact of atmospheric and terrestrial CO2 feedbacks on fertilization-induced marine carbon uptake
نویسنده
چکیده
The sensitivity of oceanic CO2 uptake to alterations in the marine biological carbon pump, such as brought about by natural or purposeful ocean fertilization, has repeatedly been investigated by studies employing numerical biogeochemical ocean models. It is shown here that the results of such ocean-centered studies are very sensitive to the assumption made about the response of the carbon reservoirs on the atmospheric side of the sea surface. Assumptions made include prescribed atmospheric pCO2, an interactive atmospheric CO2 pool exchanging carbon with the ocean but not with the terrestrial biosphere, and an interactive atmosphere that exchanges carbon with both oceanic and terrestrial carbon pools. The impact of these assumptions on simulated annual to millennial oceanic carbon uptake is investigated for a hypothetical increase in the C:N ratio of the biological pump and for an idealized enhancement of phytoplankton growth. Compared to simulations with interactive atmosphere, using prescribed atmospheric pCO2 overestimates the sensitivity of the oceanic CO2 uptake to changes in the biological pump, by about 2%, 25%, 100%, and >500% on annual, decadal, centennial, and millennial timescales, respectively. The smaller efficiency of the oceanic carbon uptake under an interactive atmosphere is due to the back flux of CO2 that occurs when atmospheric CO2 is reduced. Adding an interactive terrestrial carbon pool to the atmosphere-ocean model system has a small effect on annual timescales, but increases the simulated fertilization-induced oceanic carbon uptake by about 4%, 50%, and 100% on decadal, centennial, and millennial timescales, respectively, for pCO2 sensitivities of the terrestrial carbon storage in the middle range of the C4MIPmodels (Friedlingstein et al., 2006). For such sensitivities, a substantial fraction of oceanic carbon uptake induced by natural or purposeful ocean fertilization originates, on timescales longer than decades, not from the atmosphere but from the terrestrial biosphere. Correspondence to: A. Oschlies ([email protected])
منابع مشابه
CO2 backflux matters
Impact of atmospheric and terrestrial CO2 feedbacks on fertilization-induced marine carbon uptake A. Oschlies IFM-GEOMAR, Leibniz-Institut für Meereswissenschaften, Kiel, Düsternbrooker Weg 20, 24105 Kiel, Germany Received: 2 April 2009 – Accepted: 9 April 2009 – Published: 23 April 2009 Correspondence to: A. Oschlies ([email protected]) Published by Copernicus Publications on behalf of t...
متن کاملEffect of increasing CO2 on the terrestrial carbon cycle.
Feedbacks from the terrestrial carbon cycle significantly affect future climate change. The CO2 concentration dependence of global terrestrial carbon storage is one of the largest and most uncertain feedbacks. Theory predicts the CO2 effect should have a tropical maximum, but a large terrestrial sink has been contradicted by analyses of atmospheric CO2 that do not show large tropical uptake. Ou...
متن کاملConsequences of Considering Carbon–Nitrogen Interactions on the Feedbacks between Climate and the Terrestrial Carbon Cycle
The impact of carbon–nitrogen dynamics in terrestrial ecosystems on the interaction between the carbon cycle and climate is studied using an earth system model of intermediate complexity, the MIT Integrated Global Systems Model (IGSM). Numerical simulations were carried out with two versions of the IGSM’s Terrestrial Ecosystems Model, one with and one without carbon–nitrogen dynamics. Simulatio...
متن کاملRecent pause in the growth rate of atmospheric CO2 due to enhanced terrestrial carbon uptake
Terrestrial ecosystems play a significant role in the global carbon cycle and offset a large fraction of anthropogenic CO2 emissions. The terrestrial carbon sink is increasing, yet the mechanisms responsible for its enhancement, and implications for the growth rate of atmospheric CO2, remain unclear. Here using global carbon budget estimates, ground, atmospheric and satellite observations, and ...
متن کاملProjected climate change impact on oceanic acidification
BACKGROUND Anthropogenic CO2 uptake by the ocean decreases the pH of seawater, leading to an 'acidification' which may have potential detrimental consequences on marine organisms. Ocean warming or circulation alterations induced by climate change has the potential to slowdown the rate of acidification of ocean waters by decreasing the amount of CO2 uptake by the ocean. However, a recent study s...
متن کامل